NCERT Solution: (Is Matter Around Us Pure?)

<mark>Page – 15</mark>

1. What is meant by a substance?

A **substance** is a form of matter that has a **definite composition** and **distinct properties**. It is made up of **only one type of particle** (atoms or molecules) and cannot be separated into different components by **physical methods**.

♦ Types of Substances:

- Pure Substances: Have a fixed composition (Example: Water, Oxygen).
- **Impure Substances (Mixtures)**: Contain two or more substances mixed together (Example: Air, Salt solution).

2. Differences Between Homogeneous and Heterogeneous Mixtures

Feature	Homogeneous Mixture	Heterogeneous Mixture
Definition	A mixture with a uniform	A mixture with a non-uniform
	composition throughout.	composition.
Appearance	Looks same throughout.	Different components can be seen
		separately.
Particle	Particles are evenly spread.	Particles are not evenly spread.
Distribution		
Separation	Difficult to separate components.	Components can be separated
	I LEITED V	easily.
Examples	Air, Sugar dissolved in water, Alloys	Sand in water, Oil and water,
	(Brass, Steel).	Pizza.
	ALWAYS + V	E

Page – 18

1. Differentiate between homogeneous and heterogeneous mixtures with examples.

Answer:

Feature	Homogeneous Mixture	Heterogeneous Mixture
Definition	A mixture with a uniform composition	A mixture with a non-uniform
	throughout.	composition.
Appearance	Looks same throughout.	Different components can be seen
		separately.
Particle	Particles are evenly spread.	Particles are not evenly spread .
Distribution		

Separation	Difficult to separate components by physical methods.	Components can be separated easily by physical methods.
Tyndall Effect	Does not show the Tyndall effect .	May show Tyndall effect (if the particles are large enough).
Examples	Air, Saltwater, Sugar dissolved in water, Alloys (Brass, Steel).	Sand in water, Oil and water, Concrete, Pizza.

2. How are sol, solution, and suspension different from each other?

Answer:			
Feature	Sol (Colloid)	Solution	Suspension
Definition	A colloidal solution where one substance is dispersed in another.	A homogeneous mixture of solute and solvent.	A heterogeneous mixture where solid particles do not dissolve in the liquid.
Particle Size	1–100 nm	Less than 1 nm	More than 100 nm
Tyndall	Shows Tyndall effect	Does not show Tyndall	Shows Tyndall effect but is less
Effect	(scatters light).	effect.	stable.
Settling of	Particles do not settle on	Particles do not settle	Particles settle down if left
Particles	standing.	on standing.	undisturbed.
Example	Milk, Blood, Fog, Ink.	Sugar solution, Saltwater, Soft drinks.	Sand in water, Muddy water, Chalk powder in water.

3. To make a saturated solution, **36** g of sodium chloride is dissolved in 100 g of water at **293** K. Find its concentration at this temperature.

Answer:

We use the formula:

Concentration(%)=Mass of soluteMass of solution×100\text{Concentration} (\%) = \frac{\text{Mass of solute}}{\text{Mass of solution}} \times 100Concentration(%)=Mass of solutionMass of solute×100

IEMEDU-PRO

- Mass of solute (Sodium Chloride, NaCl) = 36 g
- Mass of **solvent** (Water) = **100** g
- Mass of solution = Mass of solute + Mass of solvent

=36g+100g=136g= 36 g + 100 g = 136 g=36g+100g=136g

Applying the formula:

 $\label{eq:concentration(%)=36136\times100\text{Concentration} (\%) = \frac{36}{136} \times 100 \concentration(%)=13636\times100 = 26.47\% = 26.47\% \end{tabular}$

➡ Final Answer:The concentration of the saturated solution is 26.47%.

<mark>Page – 19</mark>

1. Classify the following as chemical or physical changes:

Answer:		
Process	Type of Change	Reason
Cutting of trees	Physical Change	No new substance is formed; only size and shape change.
Melting of butter in a pan	Physical Change	Only the state of butter changes (solid to liquid), no new substance is formed.
Rusting of almirah	Chemical Change	A new substance (iron oxide/rust) is formed, and it cannot be reversed.
Boiling of water to form steam	Physical Change	The state of water changes (liquid to gas), but no new substance is formed.
Passing of electric current through water, breaking it into hydrogen and oxygen gases	Chemical Change	Water is decomposed into new substances (hydrogen and oxygen gases).
Dissolving common salt in water	Physical Change	The salt dissolves, but no new substance is formed; the salt can be recovered.
Making a fruit salad with raw fruits	Physical Change	The fruits are mixed, but no new substance is formed.
Burning of paper and wood	Chemical Change	New substances like ash, carbon dioxide, and heat are produced; the process is irreversible.

2. Try segregating the things around you as pure substances or mixtures.

I E LI E D O I L V

Answer:		
Things Around Us	Pure Substance or	Туре
	Mixture	
Water (H₂O)	Pure Substance	Compound
Gold (Au)	Pure Substance	Element
Air	Mixture	Homogeneous (contains oxygen, nitrogen, carbon
		dioxide, etc.)
Milk	Mixture	Colloid (Contains water, fats, proteins, etc.)
Sugar	Pure Substance	Compound (C ₁₂ H ₂₂ O ₁₁)
Saltwater	Mixture	Homogeneous (Salt dissolved in water)
Sand and iron filings	Mixture	Heterogeneous (Components can be separated
		physically)
Steel (Iron + Carbon	Mixture	Homogeneous (Alloy)
alloy)		
Copper (Cu)	Pure Substance	Element
Vegetable soup	Mixture	Heterogeneous (Different components visible)

Textbook Question Answer:

1. Which separation techniques will you apply for the separation of the following?

Answer:		
Mixture	Separation Technique	Principle Used
(a) Sodium chloride from its solution	Evaporation	Sodium chloride is left behind after
in water		water evaporates.
(b) Ammonium chloride from a	Sublimation	Ammonium chloride changes
mixture containing sodium chloride		directly into gas on heating, leaving
and ammonium chloride		sodium chloride behind.
(c) Small pieces of metal in the	Filtration (Using a	Metal pieces can be removed by
engine oil of a car	filter or magnet)	filtration or using a magnet.
(d) Different pigments from an	Chromatography	Different pigments move at
extract of flower petals	10 300	different speeds on filter paper.
(e) Butter from curd	Centrifugation	Spinning separates butter from the
		liquid.
(f) Oil from water	Separating funnel	Oil and water form distinct layers
		due to density differences.
(g) Tea leaves from tea	Filtration	Tea leaves are separated using a
		sieve or filter paper.
(h) Iron pins from sand	Magnetic separation	Iron is attracted to a magnet, but
		sand is not.
(i) Wheat grains from husk	Winnowing	Lighter husk is blown away by wind,
		heavier grains stay behind.
(j) Fine mud particles suspended in	Sedimentation &	Mud settles at the bottom, and
water	Decantation	clean water is poured off.
THINK		

2. What mass of potassium nitrate would be needed to produce a saturated solution of potassium nitrate in 50 grams of water at 313 K?

Answer:

From the given solubility table:

- Solubility of potassium nitrate (KNO₃) at 313 K = 62 g per 100 g of water
- For **50 g of water**, the required mass is:

62100×50=31 g\frac{62}{100} \times 50 = 31 \text{ g}10062×50=31 g

Final Answer: 31 g of potassium nitrate is needed.

3. Pragya makes a saturated solution of potassium chloride in water at 353 K and leaves the solution to cool at room temperature. What would she observe as the solution cools? Explain.

Answer:

As the temperature decreases, the solubility of potassium chloride **reduces**. Some of the dissolved **potassium chloride will crystallize out** of the solution. This is because at lower temperatures, less potassium chloride can remain dissolved in water.

4. Find the solubility of each salt at 293 K. Which salt has the highest solubility at this temperature?

Answer:	
Salt	Solubility at 293 K (g per 100 g of water)
Potassium nitrate (KNO₃)	32 g
Sodium chloride (NaCl)	36 g
Potassium chloride (KCl)	35 g
Ammonium chloride (NH₄Cl) 37 g

♦ Highest Solubility: Ammonium chloride (NH₄Cl) at 37 g per 100 g of water.

5. What is the effect of change in temperature on the solubility of a salt?

Answer:

- Increase in temperature \rightarrow Increases solubility of most salts.
- Decrease in temperature → Decreases solubility, causing excess salt to crystallize.

Example: Potassium nitrate (KNO₃) dissolves more at higher temperatures.

6. Explain the following giving examples:

(a) Saturated solution

A solution in which **no more solute can dissolve** at a given temperature. **Example:** Adding excess sugar to tea until no more dissolves.

(b) Pure substance

A substance that contains **only one type of particle** and has a fixed composition. **Example:** Oxygen (O_2) , Water (H_2O) .

(c) Colloid

A heterogeneous mixture where particles are too small to settle but can scatter light (Tyndall effect). Example: Milk, Fog.

(d) Suspension

A heterogeneous mixture where solid particles are large enough to settle. Example: Muddy water.

7. Classify each of the following as a homogeneous or heterogeneous mixture:

Substance Type of Mixture
Soda water Homogeneous
Wood Heterogeneous
Air Homogeneous
Soil Heterogeneous
Vinegar Homogeneous
Filtered tea Homogeneous

8. How would you confirm that a colorless liquid given to you is pure water?

Answer:

To confirm the liquid is **pure water**, we can:

- 1. Check its boiling point \rightarrow Pure water boils at 100°C.
- 2. Check its freezing point \rightarrow Pure water freezes at 0°C.
- 3. **Evaporate the liquid** \rightarrow If no residue is left, it is pure.

9. Write the steps for making tea using the words: solution, solvent, solute, dissolve, soluble, insoluble, filtrate, and residue.

Answer:

- 1. Take water as the solvent and heat it.
- 2. Add tea leaves (an insoluble substance).
- 3. Add sugar, which is soluble and will dissolve completely.
- 4. Add **milk** to form a **solution**.
- 5. Boil for some time and then filter it.
- 6. The **filtrate** (tea) is collected in a cup, and the **residue** (tea leaves) is left behind.

10. Which of the following materials are pure substances?

Answer:	
Material	Pure Substance (Yes/No)
Ice	≪ Yes
Milk	X No (It's a mixture)
Iron	≪ Yes
Hydrochloric acid (HCl)	✓ Yes
Calcium oxide (CaO)	≪ Yes
Mercury (Hg)	✓ Yes
Brick	X No (It's a mixture)
Wood	X No (It's a mixture)
Air	X No (It's a mixture)

11. Identify the solutions among the following mixtures:

Answer:		ALWAYS	+ V E
Mixture	Solution (Yes/No)		
Soil	🗙 No		
Sea water	🔗 Yes		
Air	🔗 Yes		
Coal	🗙 No		
Soda water	🖋 Yes		

12. Which of the following will show the "Tyndall effect"?

Answer:

Substance	Tyndall Effect (Yes/No)
Salt solution	X No
Milk	🔗 Yes
Copper sulphate solution	X No
Starch solution	✓ Yes

13. Which of the following are chemical changes?

Process	Type of Change
Growth of a plant	🔗 Chemical Change
Rusting of iron	🔗 Chemical Change
Mixing iron filings and sand	X Physical Change
Cooking of food	🔗 Chemical Change
Digestion of food	🔗 Chemical Change
Freezing of water	X Physical Change
Burning of a candle	🔗 Chemical Change

